Showing posts with label Solar Power Generation. Show all posts
Showing posts with label Solar Power Generation. Show all posts

3-D Graphene: Solar Cells' New Platinum?

Aug. 22, 2013 — One of the most promising types of solar cells has a few drawbacks. A scientist at Michigan Technological University may have overcome one of them.

Dye-sensitized solar cells are thin, flexible, easy to make and very good at turning sunshine into electricity. However, a key ingredient is one of the most expensive metals on the planet: platinum. While only small amounts are needed, at $1,500 an ounce, the cost of the silvery metal is still significant.
A field emission scanning electron microscopy (FESEM) image
 of 3D honeycomb-structured graphene. The novel material can
 replace platinum in dye-sensitized solar cells with virtually
no loss of generating capacity. (Credit: Hui Wang)

Yun Hang Hu, the Charles and Caroll McArthur Professor of Materials Science and Engineering, has developed a new, inexpensive material that could replace the platinum in solar cells without degrading their efficiency: 3D graphene.

Regular graphene is a famously two-dimensional form of carbon just a molecule or so thick. Hu and his team invented a novel approach to synthesize a unique 3D version with a honeycomb-like structure. To do so, they combined lithium oxide with carbon monoxide in a chemical reaction that forms lithium carbonate (Li2CO3) and the honeycomb graphene. The Li2CO3 helps shape the graphene sheets and isolates them from each other, preventing the formation of garden-variety graphite. Furthermore, the Li2CO3 particles can be easily removed from 3D honeycomb-structured graphene by an acid.

The researchers determined that the 3D honeycomb graphene had excellent conductivity and high catalytic activity, raising the possibility that it could be used for energy storage and conversion. So they replaced the platinum counter electrode in a dye-sensitized solar cell with one made of the 3D honeycomb graphene. Then they put the solar cell in the sunshine and measured its output.

The cell with the 3D graphene counter electrode converted 7.8 percent of the sun's energy into electricity, nearly as much as the conventional solar cell using costly platinum (8 percent).
Synthesizing the 3D honeycomb graphene is neither expensive nor difficult, said Hu, and making it into a counter electrode posed no special challenges.

The research has been funded by the American Chemical Society Petroleum Research Fund (PRF-51799-ND10) and the National Science Foundation (NSF-CBET-0931587). 

Disorder Can Improve the Performance of Plastic Solar Cells

Aug. 4, 2013 — Scientists have spent decades trying to build flexible plastic solar cells efficient enough to compete with conventional cells made of silicon. To boost performance, research groups have tried creating new plastic materials that enhance the flow of electricity through the solar cell. Several groups expected to achieve good results by redesigning pliant polymers of plastic into orderly, silicon-like crystals, but the flow of electricity did not improve.


Recently, scientists discovered that disorder at the molecular level actually improves the polymers' performance. Now Stanford University researchers have an explanation for this surprising result. Their findings, published in the Aug. 4 online edition of the journal Nature Materials, could speed up the development of low-cost, commercially available plastic solar cells.
These X-ray images reveal the microscopic structure of two semiconducting plastic polymers. The bottom image, with several big crystals stacked in a row, is from a highly ordered polymer sample. The top image shows a disordered polymer with numerous tiny crystals that are barely discernible. (Credit: Jonathan Rivnay (Stanford) and Michael Toney (SSRL/SLAC))

"People used to think that if you made the polymers more like silicon they would perform better," said study co-author Alberto Salleo, an associate professor of materials science and engineering at Stanford. "But we found that polymers don't naturally form nice, well-ordered crystals. They form small, disordered ones, and that's perfectly fine."

Instead of trying to mimic the rigid structure of silicon, Salleo and his colleagues recommend that scientists learn to cope with the inherently disordered nature of plastics.

Speedy electrons

In the study, the Stanford team focused on a class of organic materials known as conjugated or semiconducting polymers - chains of carbon atoms that have the properties of plastic, and the ability to absorb sunlight and conduct electricity.

Discovered nearly 40 years ago, semiconducting polymers have long been considered ideal candidates for ultrathin solar cells, light-emitting diodes and transistors. Unlike silicon crystals used in rooftop solar panels, semiconducting polymers are lightweight and can be processed at room temperature with ink-jet printers and other inexpensive techniques. So why aren't buildings today covered with plastic solar cells?

"One reason they haven't been commercialized is because of poor performance," Salleo said. "In a solar cell, electrons need to move through the materials fast, but semiconducting polymers have poor electron mobility."
To find out why, Salleo joined Rodrigo Noriega and Jonathan Rivnay, who were Stanford graduate students at the time, in analyzing more than two decades of experimental data. "Over the years, many people designed stiffer polymers with the goal of making highly organized crystals, but the charge mobility remained relatively poor," Salleo said. "Then several labs created polymers that looked disordered and yet had very high charge mobility. It was a puzzle why these new materials worked better than the more structured crystalline ones."

X-ray analysis

To observe the disordered materials at the microscopic level, the Stanford team took samples to the SLAC National Accelerator Laboratory for X-ray analysis. The X-rays revealed a molecular structure resembling a fingerprint gone awry. Some polymers looked like amorphous strands of spaghetti, while others formed tiny crystals just a few molecules long.

"The crystals were so small and disordered you could barely infer their presence from X-rays," Salleo said. "In fact, scientists had assumed they weren't there."

By analyzing light emissions from electricity flowing through the samples, the Stanford team determined that numerous small crystals were scattered throughout the material and connected by long polymer chains, like beads in a necklace. The small size of the crystals was a crucial factor in improving overall performance, Salleo said.

"Being small enables a charged electron to go through one crystal and rapidly move on to the next one," he said. "The long polymer chain then carries the electron quickly through the material. That explains why they have a much higher charge mobility than larger, unconnected crystals."

Another disadvantage of large crystalline polymers is that they tend to be insoluble and therefore cannot be produced by ink-jet printing or other cheap processing technologies, he added.

"Our conclusion is that you don't need to make something so rigid that it forms large crystals," Salleo said. "You need to design something with small, disordered crystals packed close together and connected by polymer chains. Electrons will move through the crystals like on a superhighway, ignoring the rest of the plastic material, which is amorphous and poorly conducting.

"In some sense, the synthetic chemists were ahead of us, because they made these new materials but didn't know why they worked so well," he said. "Now that they know, they can go out and design even better ones."

And Salleo offered a final piece of advice. "Try to design a material that can live with as much disorder as possible," he said. "Take the disorder for granted. Personally, I really like disorder. Just look at my office."

Share this story on Facebook, Twitter, and Google:

How to Set Up a Small Solar (Photovoltaic) Power Generator

12:55 am


The goal of this article is to show how to set up a small solar power generator. While there are a lot of decisions you can make, this particular how to focuses on small-scale solar generation (<1kWh/day), and simplifies it so that just about anyone can set up a functioning system. However, beware that compromises in efficiency, safety, and code adherence may be made for the sake of simplicity.


Steps


  1. Decide how much power you need. To do so, determine which electronic devices you would like to use, then find out how much power they use. Most devices have wattage ratings, which can then be multiplied by the number of hours of use to produce "Watt-hours" (Wh), which is a unit of power consumption. For example, if you intend to use a 15W device for 2 hours a day, that's 15W x 2h = 30Wh. Note, however, that ratings are usually higher than the actual power consumption. To determine how much a device actually draws, you can use a meter like the Kill-a-Watt. Once you have all the Watt-hours, add them up. If the total exceeds 1000Wh (or 1 Kilowatt-hour), this How to may not be suitable for you.
  2. Determine how much unobstructed sunlight you receive in the location you intend to set up solar panels. Unobstructed literally means that there are no shadows. If a tree, neighboring building, or anything else casts a shadow in that particular spot, don't count the time during which a shadow exists. So, if you get 12 hours of sunlight, but the sun is beyond the fence for 2 hours in the morning, then behind a tree for an hour at noon, then shadowed by your neighbor's barn for 2 hours before sunset, you only get to count 7 hours. Note also that days are shorter in Winter. If you intent to use your set up in Winter, use your Winter hours.
  3. Divide your total power consumption from Step 1 by the number of hours you came up with in Step 2. If you decide you need 600Wh and that you get 6h of sunlight, that's 600Wh / 6h = 100W. This is the amount of power you need to generate per hour of sunlight to meet your needs. To be safe, multiply that by at least 2 or more. This is to account for the fact that solar panels only generate their rated output when pointed directly at the sun, and if your solar panels are fixed, they won't be facing directly at the sun most of the time. After various inefficiencies, you may lose another 20% or more of the power generated. If you expect regular and sustained cloud coverage, you may need to multiply by 5 or more (or simply reduce consumption to live within your means).
  4. Buy solar panels. Broadly speaking, there are 3 types of solar panels (strictly speaking, photovoltaic cells): amorphous silicon, polycrystalline, and monocrystalline. Amorphous silicon panels are relatively inexpensive, relatively unaffected by small shadows, but are very inefficient in terms of space (for the same power rating, amorphous silicon panels will be larger and heavier). Polycrystalline panels are more efficient, cheaper than monocrystalline, but also less efficient. Monocrystalline panels are the most efficient, but also the most expensive. Output from mono- and polycrystalline panels can be halved or less by even a tiny shadow because of the way individual cells are wired. Mono- and poly-crystalline panels can be purchased these days for as little as $3-5/Watt. Consider "B-grade" panels which are significantly cheaper, yet come with reasonable warranties. While some people want their panels to last 25 years, the reality is that the cost of PV cells are coming down so rapidly that replacing or augmenting your panels in another 5-10 years may actually be cheaper than paying more now for ones that last longer. If the solar panels are more expensive than your budget allows, consider lowering your power consumption. Turning off or forgoing some devices won't kill you (and if it will, this How to is not for you).
  5. Calculate the amount of battery capacity you need. To do this, take the power consumption estimated in Step 1, then double it, because only about half the batteries' capacity should be considered usable to avoid over-discharge. Then, multiply by the number of days' reserve you would like. For instance, if you want to use 600Wh, you need 1200Wh (or 1.2kWh) of capacity, so if you had 3.6kWh, you'll be good for a few days even if the sun disappears (though you may have other problems at that point). Since most batteries have capacities in Amp-hours, it may be best to convert Wh to Ah. To do so, divide the capacity you calculated by the battery's voltage, so 3600Wh / 12V = 300Ah (divide by 6 for 6V batteries).
  6. Buy batteries. While normal car batteries will work (for a while), it is best to use "deep-cycle" batteries, which are generally marketed for use in RVs and boats. Some people prefer 6V golf cart batteries, which are designed to withstand repeated deep discharges. If using 6V batteries, connect two in series (positive terminal of one connects to negative of the other), then connect pairs in parallel (positive of one pair with positive of the other pair, negative with negative). If your budget allows, you may consider AGM batteries, which can take more "abuse", but also cost 2-3x what lead acid batteries cost. Make sure the Ah ratings of all batteries added together is higher than the capacity you calculated in the previous step. If using multiple batteries, make sure to get multiples of the same battery, and to get them all new (or reconditioned) at the same time. Mixing different capacity, model, or age batteries can shorten all of their lifespans.
  7. Buy a charge controller. Charge controllers can cost as little as $10 or over $100. The most important thing is to actually use a charge controller. If you hook up solar panels directly to some batteries, the batteries will charge for a while, but they could quickly be ruined. Whichever charge controller you get needs to support the amount of current your solar panels produce. Most charge controllers are rated in Amps, so divide the Watt rating of your solar panels by 12V (e.g. 200W / 12V ~= 17A). Find a charge controller with a rating higher than your theoretical estimate. This will give you a safety margin, as well as some headroom for growth in the future. Beyond that, exactly which charge controller to buy is basically a trade-off between cost vs efficiency and battery-life. The more expensive charge controllers will use different charging algorithms best suited to the type of battery you have. They also may compensate for temperature to better protect your batteries.
  8. If you plan on running devices off of AC power (i.e. use normal wall plugs), you will also need an inverter. There are broadly two types of inverters: modified sine wave and pure sine wave. Pure sine wave inverters give you power that is closer to city power, but these inverters tend to be more expensive ($150+ for a 600W inverter). Modified sine wave inverters can be much cheaper ($30+ for a 400W inverter), but some devices may not work, or work well with them. Note also that inverters have 80-90% efficiency, which means you lose some power in the DC to AC conversion. However, if you've followed all previous steps as recommended, your set-up should have the excess capacity to absorb this inefficiency.
 
Copyright © EEE People. Designed by OddThemes